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1 Introduction 

The Centre for Applied Statistics (CAS) of the University of Western Australia (UWA) was 
contacted by Mark Bottcher (Greyhound System Coordinator & Analyst – Project Delivery) 
from Racing and Wagering Western Australia (RWWA) and asked to perform a statistical 
analysis of results from actual greyhounds races in various Australian states and territories 
(NSW, NT, QLD, SA, TAS and WA) in which RWWA’s box draw algorithm was used. This box 
draw algorithm is supposed to randomly allocate, for a given race, the greyhounds that run 
in the race to the boxes that are used in the race2, such that each greyhound is equally likely 
to be allocated to any of the boxes used. 

Specific questions of interest are whether there is any evidence in the data that the box draw 
algorithm does not perform as designed when looking at: 

1. the allocation of individual greyhounds to boxes over all the races that they ran in, 

2. the allocation of the greyhound(s) of any owner to boxes over all races in which that 
owner had greyhound(s) running, 

3. the allocation of the greyhound(s) of any trainer to boxes over all races in which that 
trainer had greyhound(s) running, and 

4. the allocation of greyhounds trained by the same trainer to neighbouring boxes, if a 
trainer had multiple greyhounds in the same race. 

The analysis was proposed to be done for each state and territory separately. The following 
section will describe the methodology used to analyse the data followed by the results of the 
analyses for each state and territory in Section 3. A summary conclusion from all these 
analyses is given in Section 4. 

2 Methodology 

All analyses were performed using the statistical computing environment R (R Core Team 
2020). To address the questions of interest, the data were analysed using a Monte Carlo 
permutation test approach. This approach is described next in some details for the analyses 
of the data on individual greyhounds. 

                                                        

2 Typically, 8 greyhounds run in a race and 8 boxes are used. But there are races with less then 8 greyhounds, 
in which specific boxes should not be used, e.g. in races with 7 greyhounds box 5 should not be used. 



First, a contingency table was calculated by cross tabulating the data on greyhound IDs with 
the data on box allocations. This yields an 𝑀 × 8 table3 with entries 𝑜𝑖𝑗,obs, where 𝑜𝑖𝑗,obs is 

the number of times greyhound 𝑖 (𝑖 = 1,… ,𝑀) was allocated to box 𝑗 (𝑗 = 1, … ,8). Next, 
based on the boxes used in the races in which each greyhound started, we calculated 𝑒𝑖𝑗 , the 

expected number of times that greyhound 𝑖 should be allocated to box 𝑗 (under the 
assumption that in each race it is allocated equally likely to any of the boxes used in that 
race). 

Based on these two quantities, we can calculate for each greyhound a Pearson’s 𝜒2 style 
statistic for how well the observed frequencies match the fitted frequencies. These individual 
statistics are: 

𝜒𝑖,obs
2 =∑

(𝑜𝑖𝑗,obs − 𝑒𝑖𝑗)
2

𝑒𝑖𝑗

8

𝑗=1

,  𝑖 = 1,… ,𝑀 

A test statistic for judging whether the overall observed contingency table is consistent with 
the expected frequencies is then given by 𝜒all,obs

2 = ∑ 𝜒𝑖,obs
2𝑀

𝑖=1 . 

As long as a greyhound started in sufficiently many races, such that for all boxes that the 
greyhound was allocated to the expected number of times that the greyhound is allocated to 
each box is at least 5, a 𝜒2 distribution would be a suitable reference distribution for its 
individual test statistic 𝜒𝑖,obs

2 . However, for greyhounds who participated in a relative small 

number of races it is not immediately clear what the correct reference distribution for their 
individual test statistics 𝜒𝑖,obs

2  would be. For the overall test statistic 𝜒all,obs
2  this issue is 

compounded with the additional issue that its individual components are stochastically 
dependent in a rather subtle way. 

A Monte Carlo permutation test approach is one way of addressing these issues. In this 
approach the box allocations for each race are repeatedly randomly permuted. For the 
results reported in Section 3, the number of times 𝐵 that the box allocations are randomly 
permuted was chosen to be 10,000. For each of these random permutations, the contingency 
table obtained by cross tabulating data on greyhound ID with data on (permuted) box 
allocations is recalculated to obtain 𝑜𝑖𝑗,𝑘, the number of times greyhound 𝑖 (𝑖 = 1, … ,𝑀) was 

allocated to box 𝑗 (𝑗 = 1,… , 𝑘) in permutation 𝑘 (𝑘 = 1,… , 𝐵)4. All statistics are then re-
evaluated on each contingency table based on permuted data yielding values 𝜒𝑖,𝑘

2  (𝑖 =

1,… ,𝑀) and 𝜒all,𝑘
2  for 𝑘 = 1,… , 𝐵. These values form (an empirical approximation of) the 

reference distribution of the test statistics 𝜒𝑖,obs
2  and 𝜒all,obs

2  under the assumption that the 

box draw algorithm works as designed. 

                                                        

3 Different states and territories have, of course, different values for 𝑀. Details are given in the appropriate 
subsection of Section 3. 

4 Note that the expected allocations 𝑒𝑖𝑗 do not change. 



This allows us to calculate a 𝑝-value associated with the (null) hypothesis that the observed 
pattern of box assignments for greyhound 𝑖 is consistent with the expected pattern as 
follows: 

𝑝𝑖 =
#{𝑘: 𝜒𝑖,𝑘

2 ≥ 𝜒𝑖,obs
2 } + 1

𝐵 + 1
 

where #{𝑘: 𝜒𝑖,𝑘
2 ≥ 𝜒𝑖,obs

2 } is the number of 𝜒𝑖,𝑘
2  values (𝑘 = 1,… , 𝐵) that are larger or equal to 

𝜒𝑖,obs
2 . 

Likewise, we can calculate a 𝑝-value associate with the (null) hypothesis that the overall 
observed pattern of box assignments is consistent with the expected pattern as follows: 

𝑝all =
#{𝑘: 𝜒all,𝑘

2 ≥ 𝜒all,obs
2 } + 1

𝐵 + 1
 

where #{𝑘: 𝜒all,𝑘
2 ≥ 𝜒all,obs

2 } is the number of 𝜒all,𝑘
2  values (𝑘 = 1, … ,𝐵) that are larger or equal 

to 𝜒all,obs
2 . 

A small value for 𝑝all would indicate that the observed overall pattern of box allocations is 
not consistent with the assumption that greyhounds are randomly allocated to boxes with 
each greyhound being equally likely to be allocated to any of the boxes used. In Section 3 we 
use a 1% significance level, i.e. any 𝑝-value 𝑝all less than 1% will be declared (statistically) 
significant indicating that the data provides evidence that the box draw algorithm does not 
allocate greyhounds to boxes such that in every race every greyhound is equally likely to be 
allocated to any of the boxes. 

When assessing the 𝑀 𝑝-values 𝑝𝑖 , 𝑖 = 1,… ,𝑀, for the box allocations for each individual 
greyhound, care has to be taken of the fact that 𝑀 (simultaneous) tests are performed and, 
already for moderately large 𝑀, one would expect some of the 𝑝-values to be, just by chance, 
below conventionally used significance levels of 1% or 5%. The discussion in Section 3 
addresses this issue in two ways. First a 1% significance level with a Bonferroni correction 
is used for performing the multiple tests, i.e. the 𝑝-values are compared to 1/𝑀. This 
Bonferroni correction is designed to control the probability of incorrectly declaring one or 
more 𝑝-values as being sufficiently small, i.e. to declare for one or more greyhounds that 
their observed allocation to boxes is not consistent with the assumption that they are 
allocated in each race randomly to their boxes with each box being equally likely, when 
performing 𝑀 simultaneous tests. 

The second approach employed to address the problem of performing multiple tests, is the 
usage of a false discovery rate (FDR) method. FDR methods attempt to control the expected 
proportion of rejected null hypotheses that were incorrect rejections. Here, as the 𝑝𝑖  are not 
independent of each other, we use the FDR procedure proposed by Benjamini and Yekutieli 
(2001). 

Both methods, the Bonferroni correction method and the FDR method, are used on all 𝑝-
values 𝑝𝑖 , 𝑖 = 1,… ,𝑀, but also on the subset that corresponds to greyhounds that started at 
least 40 times. The rationale for looking at this subset only is based on the recommendation 



for the standard 𝜒2 test that each expected frequency should be at least 5. As there are 8 
boxes this recommendation would be fulfilled if a greyhound starts in 40 races with 8 
runners. 

The analyses for the allocation of greyhounds owned by the same owner and the allocation 
of greyhounds trained by the same trainer were performed in an analogous manner. Several 
issues arose for the analysis of the frequencies with which greyhounds trained by the same 
trainer were allocated to neighbouring boxes: 

• If the race has only 7 runners and box 5 is not used, are boxes 4 and 6 regarded as 
neighbouring boxes? Likewise, how should races with even less runners be treated? 

• If a trainer has 3 runners in a race and they are allocated to 3 consecutive boxes, does 
this count as two allocations to neighbouring boxes? Or should the analysis look at all 
possible cases: 

– None of the 3 greyhounds in neighbouring boxes. 

– Two of the 3 greyhounds in neighbouring boxes and the third in a box separated 
by at least one other box from the first two. 

– All 3 greyhounds in consecutive boxes. 

  How to handle all the various possibilities if a trainer has more than 3 runners in a race? 

To address these issues, a decision was taken to consider only races with 8 runners and only 
those cases in which a trainer has exactly 2 runners in the race. Under this scenario, if 
greyhounds are randomly assigned to boxes with every greyhound being equally likely to be 
assigned to any of the boxes used, the probability that the two greyhounds of a trainer are 
assigned to neighbouring boxes in a race with 8 runners is 0.25. 

Thus, every trainer who had exactly two greyhounds running in at least one race was used 
in the cross tabulation of how often the two greyhounds of the trainer were allocated to 
neighbouring boxes or not. In terms of the description of the analysis above, an 𝑀× 2 
contingency table was created with 𝑀 being the number of trainers that had exactly two 
greyhounds running in at least one race. The frequencies 𝑜𝑖1 and 𝑜𝑖2 counted how often the 
two greyhounds of trainer 𝑖 (𝑖 = 1,… ,𝑀) were allocated to non-neighbouring and 

neighbouring boxes, respectively. The expected frequencies were calculated as 𝑒𝑖1 =
3

4
𝑛𝑖 and 

𝑒𝑖2 =
1

4
𝑛𝑖 , where 𝑛𝑖 = 𝑜𝑖1 + 𝑜𝑖2 is the number of races in which trainer 𝑖 had exactly two 

greyhound running. The remainder of the analysis followed the Monte Carlo permutation 
test approach outlined above. The only deviation from the procedure described above is that 
when analysing a subset of 𝑝-values for individual trainers the chosen subset included the 𝑝-
values of all those trainers who had at least 20 times exactly 2 greyhounds running in a race5. 

                                                        

5 With 𝑛𝑖 ≥ 20, we have 𝑒𝑖1 ≥ 15 and 𝑒𝑖2 ≥ 5. 



3 Results 

3.1 Races in South Australia 

The provided spreadsheet contained information on 20,479 races held at 1,867 meetings 
between 1 January 2015 and 31 December 2019. There were 7,572 unique greyhound IDs, 
2,650 unique owner IDs and 664 unique trainer IDs. 

3.1.1 Allocation of individual greyhounds 

The analysis of the actual overall allocation of greyhounds to boxes provided no evidence 
against the assumption that in every race every greyhound is equally likely to be assigned to 
any one of the boxes used (𝑝all = 0.640). Analysing each individual greyhound’s allocation 
to boxes, taking into account that this involves the analysis of 7,572 𝑝-values by either using 
a 1% significance level with a Bonferroni correction or controlling the false discovery rate at 
1%, provided no evidence that the box allocation of any individual greyhound was 
suspicious. Analysing the 1,224 𝑝-values for the subset of greyhounds that started in at least 
40 races yielded the same result, i.e. no evidence was found that the assumption, that each 
greyhound is equally likely to be assigned to any one of the boxes used in races in which the 
greyhound ran, is not tenable. 

3.1.2 Allocation of greyhounds by owner 

The analysis of the actual overall allocation of greyhounds owned by the same owner to 
boxes provided no evidence against the assumption that in every race every greyhound is 
equally likely to be assigned to any one of the boxes used (𝑝all = 0.260). Analysing for each 
individual owner the allocation of his or her greyhound(s) to boxes, taking into account that 
this involves the analysis of 2,650 𝑝-values by either using a 1% significance level with a 
Bonferroni correction or controlling the false discovery rate at 1%, provided no evidence 
that the box allocation of greyhound(s) belonging to the same owner was suspicious for any 
of the owners. Analysing the 789 𝑝-values for the subset of owners who had greyhounds 
starting at least 40 times yielded the same result, i.e. no evidence was found that the 
assumption, that the greyhound(s) of any owner is/are equally likely to be assigned to any 
of the boxes used in races in which the greyhound(s) ran, is not tenable. 

3.1.3 Allocation of greyhounds by trainer 

The analysis of the actual overall allocation of greyhounds trained by the same trainer to 
boxes provided no evidence against the assumption that in every race every greyhound is 
equally likely to be assigned to any one of the boxes used (𝑝all = 0.715). Analysing for each 
individual trainer the allocation of his or her greyhound(s) to boxes, taking into account that 
this involves the analysis of 644 𝑝-values by either using a 1% significance level with a 
Bonferroni correction or controlling the false discovery rate at 1%, provided no evidence 
that the box allocation of greyhound(s) trained by the same trainer was suspicious for any 
of the trainers. Analysing the 329 𝑝-values for the subset of trainers who had greyhounds 



starting at least 40 times yielded the same result, i.e. no evidence was found that the 
assumption, that the greyhound(s) of any trainer is/are equally likely to be assigned to any 
of the boxes used in races in which the greyhound(s) ran, is not tenable. 

3.1.4 Allocation of greyhounds to neighbouring boxes 

Of the 20,479 races in the spreadsheet, 15,292 were races with 8 runners and in 6,182 of 
those at least one trainer had exactly two greyhounds running. Altogether there were 317 
trainer IDs involved and 7,574 cases in which trainers had exactly two greyhounds running 
in a race. 

The analysis of the overall contingency table provided no evidence against the hypothesis 
that allocation mechanism works as it is designed to do (𝑝all = 0.304). Analysing the results 
for individual trainers, taking into account that this involves the analysis of 317 𝑝-values by 
either using a 1% significance level with a Bonferroni correction or controlling the false 
discovery rate at 1%, provided no evidence that any trainer has his or her two greyhounds 
allocated more often to neighbouring boxes than what would be expected under the 
allocation mechanism. Analysing the 73 𝑝-values for the subset of trainers who have exactly 
two greyhounds starting in at least 20 races yielded the same result, i.e. no evidence was 
found that the assumption, that the two greyhounds of any trainer are equally likely to be 
assigned to any of the 8 boxes, is not tenable. 

4 Conclusions 

RWWA’s box draw algorithm is supposed to allocate, in any given race, the participating 
greyhounds to boxes in such a manner that each greyhound is equally likely to be assigned 
to any of the employed boxes. The summary conclusion from all the analyses reported in 
Section 3 is that there is no evidence in the data to suggest that RWWA’s box algorithm does 
not work as designed when analysing the data with respect to 

• the allocation of individual greyhounds to boxes over all the races that they ran in, 

• the allocation of the greyhound(s) of any owner to boxes over all races in which that 
owner had greyhound(s) running, 

• the allocation of the greyhound(s) of any trainer to boxes over all races in which that 
trainer had greyhound(s) running, and 

• the allocation of greyhounds trained by the same trainer to neighbouring boxes, if a 
trainer had two greyhounds in the same race. 
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